Sl.No
|
Publications
|
1 |
Ramesh S.V.*, Neha K. R, Sharanya K., Ashamol P, Sudharshana S, Pandiselvam R. et al., (2025). Gum arabic edible coating and its impact on the phytophenolics of coconut (Cocos nucifera L.) haustorium during storage. Nutrition & Food Science https://doi.org/10.1108/NFS-03-2025-0106 |
2 |
Hebbar K.B., Krishnakumar V., Ramesh S.V (2025). Coconut palm sap- a natural beverage and source of value added products. Nova Science Publishers, New York, USA. ISBN: 979-8-89530-640-6. https://doi.org/10.52305/EJMS4171 |
3 |
Ramesh S.V.*, Rajesh M.K., Das A., Hebbar KB (2024). CRISPR/Cas9 -based genome editing to expedite the genetic improvement of palms: challenges and prospects. Frontiers in Plant Science 15 https://doi.org/10.3389/fpls.2024.1385037 |
4 |
Ramesh S.V.*, Pandiselvam R., Beegum P.P.S. et al., (2024). Valorization of coconut (Cocos nucifera L.) testa as a biocolourant. Frontiers in Sustainable Food Systems. 8, p.1382214.https://doi.org/10.3389/fsufs.2024.1382214 |
5 |
Ramesh S.V.*, Praveen S. (2024). Coconut based nutrition and nutraceutical perspectives. Springer, XVI, 266p. https://doi.org/10.1007/978-981-97-3976-9 |
6 |
Beegum P.P.S.*, Ramesh S.V.*, Pandiselvam R.*, et al., (2024). Perspectives on the cardioprotective, neuroprotective and anti-obesity functions of coconut (Cocos nucifera L.). Food Bioscience, 58 p.103756. https://doi.org/10.1016/j.fbio.2024.103756 |
7 |
Ramesh S.V.*, Rose Mary, Beegum P.P.S, Pandiselvam R., Sugatha P., Neenu S., Shil S., et al., (2023) Physicochemical characterization and fatty acid profiles of testa oils from various coconut (Cocos nucifera L.) genotypes. Journal of the Science of Food and Agriculture 103(1): 370-379 |
8 |
Cariappa M.B., Ramesh S.V.*, Chikkanna GS, Venkatesh J, Vishnuvardhana, Hebbar K.B*, Singh A.K. (2023). Detection of oil adulteration in virgin coconut oil (VCO) utilizing chemometrics and principal component analysis. Food Analytical Methods 16: 1291– 1301. https://doi.org/10.1007/s12161-023-02506-4 |
9 |
Ramesh S.V.* (2013). Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA). Molecular Biotechnology 55: 87- 100. |
10 |
Ramesh S.V.*, Krishnan V., Praveen S., Hebbar K.B. (2021). Dietary prospects of coconut oil for the prevention and treatment of Alzheimer’s disease (AD): a review of recent evidences. Trends in Food Science and Technology 112:201-211 |
11 |
Ramesh S.V.*, Pandiselvam R., Shameena Beegum P.P., Saravana Kumar R.M., Manikantan M.R., Hebbar K.B. (2021). Review of Cocos nucifera L. testa-derived phytonutrients with special reference to phenolics and its potential for encapsulation. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-021-05310-2 |
12 |
Ramesh S.V.*, Hebbar K.B.*, Rajesh M.K., Abhin S.P., Gangaraj K.P., Athul Bobby (2021). Transcriptome analysis of Cocos nucifera L., seedlings having contrasting water use efficiency (WUE) under water-deficit stress: molecular insights and genetic markers for drought tolerance. Biol. Life Sci. Forum 4: 73 https://doi.org/10.3390/IECPS2020-08853 |
13 |
Ramesh S.V.*, Pandiselvam R., Thushara R., Manikantan M.R., Hebbar K.B., Shameena Beegum P.P., Mathew A.C.,Neenu S. and Shil S. (2020). Engineering intervention for production of virgin coconut oil by hot process and multivariate analysis of quality attributes of virgin coconut oil extracted by various methods. Journal of Food Process Engineering 43(6):p.e13395. https://doi.org/10.1111/jfpe.13395 |
14 |
Ramesh S.V. Williams S, Kappagantu M, Mitter N, Pappu H.R (2017). Transcriptome -wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Research 238: 13–23 |
15 |
Ramesh S.V., Mishra A.K., Praveen S. (2007). Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Nucleic Acid Therapeutics (formerly Oligonucleotides) 17: 251–257 |
16 |
Ramesh S.V., Chouhan, B.S., Kumar, G., Praveen, S. and Chand, S., 2017. Expression dynamics of Glycine max (L.) Merrill microRNAs (miRNAs) and their targets during Mungbean yellow mosaic India virus (MYMIV) infection. Physiological and Molecular Plant Pathology, 100:13-22 |
17 |
Ramesh S.V., Yogindran S., Gnanasekaran P., Chakraborty S., Winter S., Pappu H.R (2020). Virus and viroid-derived small RNAs as modulators of host gene expression molecular insights into pathogenesis. Frontiers in Microbiology 11:614231 https://doi.org/10.3389/fmicb.2020.614231 |
18 |
Ramesh S.V. *, Shivakumar, M., Ramteke, R., Bhatia, V.S., et al. 2019. Quantification of a legume begomovirus to evaluate soybean genotypes for resistance to yellow mosaic disease. Journal of Virological Methods 268:24-31 https://doi.org/10.1016/j.jviromet.2019.03.002 |
19 |
Moyo, L., Ramesh S.V., Kappagantu, M., Mitter, N., Sathuvalli, V. and Pappu, H.R., 2017. The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome. Virology Journal, 14, pp.1-17. https://doi.org/10.1186/s12985-017-0803-8 |
20 |
Praveen, S. Ramesh S.V., Mishra, A.K., Koundal, V. and Palukaitis, P., 2010. Silencing potential of viral derived RNAi constructs in Tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Research, 19, pp.45-55. https://doi.org/10.1007/s11248-009-9291-y |